
Diia: Mobile Application Bug Bounty Program
DIIA

Diia: Mobile Application Bug
Bounty Program

Bugcrowd On-Demand program results

Report created on December 17, 2020

Prepared by

Michael Perry, Security Solutions Consultant
michael.perry@bugcrowd.com

3

4

5

6

9

16

19

Table of contents

1 Executive summary

2 Reporting and methodology

3 Targets and scope

4 Findings summary

5 Vulnerability details

6 Appendix

7 Closing statement

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 2 of 20

Executive summary

Diia: Mobile Application Bug Bounty Program engaged
Bugcrowd, Inc. to perform an On-Demand Bounty Program,
commonly known as a crowd-sourced penetration test.

An On-Demand Bounty Program is a cutting-edge approach to an
application assessment or penetration test. Traditional penetration
tests use only one or two personnel to test an entire scope of work,
while an On-Demand Bounty leverages a crowd of security
researchers. This increases the probability of discovering esoteric
issues that automated testing cannot find and that traditional
vulnerability assessments may miss in the same testing period.

The purpose of this program was to identify security vulnerabilities in
the targets listed in the targets and scope section. Once identified,
each vulnerability was rated for technical impact defined in the
findings summary section of the report.

Testing for Diia: Mobile Application Bug Bounty Program’s
targets occurred during the period of: 12/08/2020 – 12/15/2020.

For this On-Demand Program, 83 researchers were invited to
participate; 27 accepted the invitation. Submissions were received
from 4 unique researchers.

The continuation of this document summarizes the findings, analysis,
and recommendations from the On-Demand Bounty Program
performed by Bugcrowd for Diia: Mobile Application Bug Bounty
Program.

This report is just a summary of the
information available.

All details of the program's findings —
comments, code, and any researcher
provided remediation information —
can be found in the Bugcrowd
Crowdcontrol platform.

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 3 of 20

https://tracker.bugcrowd.com/diia-od/submissions

Reporting and methodology

Background

The strength of crowdsourced testing lies in multiple researchers, the pay-for-results model, and the
varied methodologies that the researchers implement. To this end, researchers are encouraged to use
their own individual methodologies on Bugcrowd On-Demand programs.

The workflow of every penetration test can be divided into the following four phases:

Bugcrowd researchers who perform web application testing and vulnerability assessment usually
subscribe to a variety of methodologies following the highlighted workflow, including the following:

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 4 of 20

Targets and scope

Scope

Prior to the On-Demand program launching, Bugcrowd worked with
Diia: Mobile Application Bug Bounty Program to define the Rules of
Engagement, commonly known as the program brief, which includes
the scope of work. The following targets were considered explicitly in
scope for testing:

DIIA Android Application

DIIA iOS Application

DIIA API

All details of the program scope and
full program brief can be reviewed in
the Program Brief.

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 5 of 20

https://bugcrowd.com/diia-od?preview=9667a4db89ab774caac2b41027ad8847

Findings summary

Findings by severity

The following chart shows all valid assessment findings from the program by technical severity.

Technical severity
Critical High Medium Low

N
um

be
r o

f s
ub

m
is

si
on

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Diia: Mobile Application Bug Bounty Program

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 6 of 20

Risk and priority key

The following key is used to explain how Bugcrowd rates valid vulnerability submissions and their
technical severity. As a trusted advisor Bugcrowd also provides common "next steps" for program owners
per severity category.

TECHNICAL SEVERITY EXAMPLE VULNERABILITY TYPES

Critical

Critical severity submissions (also known as "P1" or "Priority 1") are submissions
that are escalated to Diia: Mobile Application Bug Bounty Program as soon as
they are validated. These issues warrant the highest security consideration and
should be addressed immediately. Commonly, submissions marked as Critical can
cause financial theft, unavailability of services, large-scale account compromise,
etc.

Remote Code Execution
Vertical Authentication Bypass
XML External Entities Injection
SQL Injection
Insecure Direct Object Reference for a critical
function

High

High severity submissions (also known as "P2" or "Priority 2") are vulnerability
submissions that should be slated for fix in the very near future. These issues still
warrant prudent consideration but are often not availability or "breach level"
submissions. Commonly, submissions marked as High can cause account
compromise (with user interaction), sensitive information leakage, etc.

Lateral authentication bypass
Stored Cross-Site Scripting
Cross-Site Request Forgery for a critical
function
Insecure Direct Object Reference for an
important function
Internal Server-Side Request Forgery

Medium

Medium severity submissions (also known as "P3" or "Priority 3") are vulnerability
submissions that should be slated for fix in the major release cycle. These
vulnerabilities can commonly impact single users but require user interaction to
trigger or only disclose moderately sensitive information.

Reflected Cross-Site Scripting with limited
impact
Cross-Site Request Forgery for an important
function
Insecure Direct Object Reference for an
unimportant function

Low

Low severity submissions (also known as "P4" or "Priority 4") are vulnerability
submissions that should be considered for fix within the next six months. These
vulnerabilities represent the least danger to confidentiality, integrity, and availability.

Cross-Site Scripting with limited impact
Cross-Site Request Forgery for an
unimportant function
External Server-Side Request Forgery

Informational

Informational submissions (also known as "P5" or "Priority 5") are vulnerability
submissions that are valid but out-of-scope or are "won’t fix" issues, such as best
practices.

Lack of code obfuscation
Autocomplete enabled
Non-exploitable SSL issues

Bugcrowd’s Vulnerability Rating Taxonomy

More detailed information regarding our vulnerability classification can be found at: https://bugcrowd.com/vrt

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 7 of 20

Findings table

The following table lists all valid assessment findings from the program:

Title VRT Duplicates Priority State Link

IDOR via license plate at endpoint /ap
i/v1/documents/vehicle-insurance

Broken Access
Control (BAC)

- P4 TRIAGED

App Crash on Malformed QR Code R
ead

Application-
Level Denial-of-
Service (DoS)

- P5 TRIAGED

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 8 of 20

https://tracker.bugcrowd.com/diia-od/submissions/c5e2b4db29198b1aeea4db550a9b11f025368dde99008f5621ffc4a7f44f502d
https://tracker.bugcrowd.com/diia-od/submissions/10036f47783ba292943efd5eb0f63577e6a99694123e27da88ab2d7cf8ffd0d1

Vulnerability details

This section outlines the full submission data for each valid finding. These findings are unaltered from
their original state from the researcher. Due to the competitive nature and gamification of crowd-sourced
security assessments, some typos or grammar errors may occur. Each finding is headlined with the
submission title and priority followed by more detailed vulnerability information based on the type of
finding submitted. Several other fields may appear based on the context and VRT classification selected
by a researcher.

Such details may include the following:

Description:
This section appears above the "Reference Number" as a free form area for the researcher to describe
the context of the submission.

Reference number:
Submission unique Identifier visible to researchers.

VRT:
The Vulnerability Rating Taxonomy is the baseline guide used for classifying technical severity.

Bug URL:
This is the full URL/URI of where the vulnerability took place.

Extra info:
A free form area for the researcher to add additional information to the submission.

HTTP request:
This is a text block with the full HTTP(S) request that triggered the vulnerability, including all its
associated headers and cookie information.

Additional details:
Several other fields may appear based on the context and VRT classification selected by a researcher.
Bugcrowd ASE curated proof of concepts, comments to the researcher or Bugcrowd (public or private),
assignees, attachments, and state change metadata is available in the Crowdcontrol Platform.

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 9 of 20

https://bugcrowd.com/vrt
https://tracker.bugcrowd.com/diia-od

IDOR via license plate at endpoint /api/v1/documents/vehicle-insurance P4

Type of Vulnerability

IDOR

Additional Information to Properly describe impact

1. License Plate contains 8 characters (2 letters + 4 numbers + 2 letters).
2. 2 letters - region code of Ukraine.
3. 4 numbers - random numeric.
4. 2 letters - serial number.

So, it's not too hard to enumerate all license plates in DB.

Steps to Reproduce

1. Download script exploit-idor.py (this script use python 3).
2. Replace in this script authentication data (user_id and token)
3. Install package requests (https://pypi.org/project/requests/): pip3 install requests (if not

installed)
4. Run this script with python3 exploit-idor.py.
5. When data will be loaded you will see output with all license plates from demo-server (in this case

data is almost same).

PoC (first 6 users data)

КА7001АХ Data:
[{'docStatus': 200, 'licensePlate': 'КА7001АХ', 'vin': '1', 'vehicleLicen
seId': '1', 'serialNumber': '140457001', 'status': 'Active', 'expirationD
ate': '11.12.2020', 'name': 'XXXX', 'address': 'XXXX', 'phone': 'XXXX', '
email': 'xxxx', 'website': 'xxxx', 'validOn': '11.12.2020'}]
КА7002АХ Data:
[{'docStatus': 200, 'licensePlate': 'КА7002АХ', 'vin': '1', 'vehicleLicen
seId': '1', 'serialNumber': '140457002', 'status': 'Active', 'expirationD
ate': '11.12.2020', 'name': 'XXXX', 'address': 'XXXX', 'phone': 'XXXX', '
email': 'xxxx', 'website': 'xxxx', 'validOn': '11.12.2020'}]

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 10 of 20

https://portswigger.net/web-security/access-control/idor
https://pypi.org/project/requests/

КА7003АХ Data:
[{'docStatus': 200, 'licensePlate': 'КА7003АХ', 'vin': '1', 'vehicleLicen
seId': '1', 'serialNumber': '140457003', 'status': 'Active', 'expirationD
ate': '11.12.2020', 'name': 'XXXX', 'address': 'XXXX', 'phone': 'XXXX', '
email': 'xxxx', 'website': 'xxxx', 'validOn': '11.12.2020'}]
КА7004АХ Data:
[{'docStatus': 200, 'licensePlate': 'КА7004АХ', 'vin': '1', 'vehicleLicen
seId': '1', 'serialNumber': '140457004', 'status': 'Active', 'expirationD
ate': '11.12.2020', 'name': 'XXXX', 'address': 'XXXX', 'phone': 'XXXX', '
email': 'xxxx', 'website': 'xxxx', 'validOn': '11.12.2020'}]
КА7005АХ Data:
[{'docStatus': 200, 'licensePlate': 'КА7005АХ', 'vin': '1', 'vehicleLicen
seId': '1', 'serialNumber': '140457005', 'status': 'Active', 'expirationD
ate': '11.12.2020', 'name': 'XXXX', 'address': 'XXXX', 'phone': 'XXXX', '
email': 'xxxx', 'website': 'xxxx', 'validOn': '11.12.2020'}]
КА7006АХ Data:
[{'docStatus': 200, 'licensePlate': 'КА7006АХ', 'vin': '1', 'vehicleLicen
seId': '1', 'serialNumber': '140457006', 'status': 'Active', 'expirationD
ate': '11.12.2020', 'name': 'XXXX', 'address': 'XXXX', 'phone': 'XXXX', '
email': 'xxxx', 'website': 'xxxx', 'validOn': '11.12.2020'}]

Why

vin and vehicleLicenseId validated but not used for query. Only license plate is important,
also, server don't validate access to this information.

Impact

Malicious user can steal sensitive information of other users like the following: name, address,
phone, email, website, etc.

Mitigation

Validate if provided license plate belongs to current user.

Reference number:
c5e2b4db29198b1aeea4db550a9b11f025368dde99008f5621ffc4a7f44f502d

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 11 of 20

VRT:
Broken Access Control (BAC) > Insecure Direct Object References (IDOR)

Bug URL:
https://diia2sb.diia.gov.ua/api/v1/documents/vehicle-insurance

Extra info:

HTTP request:

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 12 of 20

App Crash on Malformed QR Code Read P5

Type of Vulnerability

Improper Error Handling causing App Crash

Steps to Reproduce

1. Sign in to Diia app.
2. Open QR code reader.
3. Read QR code from section QR code
4. App crashed.

QR code

Embedded image redacted

Title: crashQR.png

Description

Part of Crash log

Thread 0 name: Dispatch queue: com.apple.main-thread
Thread 0 Crashed:
0 Diia 0x0000000104a8f234 0x1049c0000 + 8484
36
1 Diia 0x0000000104a8f094 0x1049c0000 + 8480
20
2 Diia 0x00000001049ebc08 0x1049c0000 + 1792
08
3 Diia 0x0000000104b64d50 0x1049c0000 + 1723
728
4 Diia 0x0000000104b66170 0x1049c0000 + 1728
880
5 Diia 0x0000000104a7aaa8 0x1049c0000 + 7645

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 13 of 20

https://owasp.org/www-community/Improper_Error_Handling

84
6 libdispatch.dylib 0x00000001b0155298 _dispatch_call_blo
ck_and_release + 24
7 libdispatch.dylib 0x00000001b0156280 _dispatch_client_c
allout + 16
8 libdispatch.dylib 0x00000001b01385b0 _dispatch_main_que
ue_callback_4CF$VARIANT$armv81 + 856
9 CoreFoundation 0x00000001b049d5d0 __CFRUNLOOP_IS_SER
VICING_THE_MAIN_DISPATCH_QUEUE__ + 12
10 CoreFoundation 0x00000001b0497a78 __CFRunLoopRun + 2
480
11 CoreFoundation 0x00000001b0496b90 CFRunLoopRunSpecif
ic + 572
12 GraphicsServices 0x00000001c67b9598 GSEventRunModal +
160
13 UIKitCore 0x00000001b2d80638 -[UIApplication _r
un] + 1052
14 UIKitCore 0x00000001b2d85bb8 UIApplicationMain
+ 164
15 Diia 0x00000001049c761c 0x1049c0000 + 3023
6
16 libdyld.dylib 0x00000001b0175588 start + 4

Pseudo-C recovered by Ghidra on offset 0x100000000 + 848436 (0x1000cf234) :

local_70 = 0x2f; // Slash
uStack104 = 0xe100000000000000;
local_60 = param_1;
lStack88 = param_2;
uVar3 = FUN_10000c2c8();
lVar4 = __stubs::_$sSy10FoundationE10components11separatedBySaySSGqd___tS
yRd__lF
 (&local_70,__got::_$sSSN,__got::_$sSSN,uVar3,uVar3); //
 This is Array of substrings separated by "/".
// ...
 if (*(ulong *)(lVar4 + 0x10) == 5) { // If count equals to 5.
 /* WARNING: Could not recover jumptable at 0x0001000cf234. To
o many branches */

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 14 of 20

 /* WARNING: Treating indirect jump as call */
 UNRECOVERED_JUMPTABLE_00 = (code *)SoftwareBreakpoint(1,0x1000cf238);
 // ???
 (*UNRECOVERED_JUMPTABLE_00)(); // ???
 return;
}

Description:
Looks like parse of QR code crashed on invalid handling of path components.
Crash occurs, if parser can not find required string identifiers in path and count of path components
is incorrect.
Additional information:

1. components(separatedBy:) -- this function called to split path by 0x2f (/)
2. lVar4 = NSArray instance.
3. lVar4 + 0x10 = NSArray.count property (possibly).

Impact

Denial of Service.
App crashes and malicious user can use this for own purposes (as example, for social engineering).

Reference number:
10036f47783ba292943efd5eb0f63577e6a99694123e27da88ab2d7cf8ffd0d1

VRT:
Application-Level Denial-of-Service (DoS) > App Crash

Bug URL:

Extra info:

I attach video with reproduce.

HTTP request:

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 15 of 20

https://developer.apple.com/documentation/foundation/nsstring/1413214-components

Appendix

Included in this appendix are auxiliary metrics and insights into the On-Demand program. This includes
information regarding submissions over time, payouts, prevalent issue types, and how the program
compared to an aggregate of all Bugcrowd On-Demand programs.

Submissions over time

The timeline below shows submissions received and validated by the Bugcrowd team:

Submissions signal

A total of 6 submissions were received, with 2 unique valid issues discovered. Bugcrowd identified 0
duplicate submissions and removed 4 invalid submissions. The ratio of unique valid submissions to noise
was 33%, which is lower than the average ratio of 37% across Bugcrowd's other On-Demand programs.

12-09 12-10 12-11 12-12 12-13 12-14
0

0.5

1

1.5

2

2.5

3

3.5

4

validated

received

Submissions Over Time

Submission Outcome Count

Valid 2

Invalid 4

Duplicate 0

Total 6

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 16 of 20

33% 37%

Diia: Mobile Application
Bug Bounty Program

Average Bugcrowd On-Demand
Program

0%

50%

100%

25%

75%

Ratio of Unique Valid Submissions to Noise

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 17 of 20

Bug types overview

A comparison of the distribution of submissions across bug types for the On-Demand program to that of
Bugcrowd's other On-Demand programs is shown below.

Application-Level Denial-of-Service (DoS) Broken Access Control (BAC)

Diia: Mobile Application Bug Bounty Program

Other Cross-Site Scripting (XSS) Cross-Site Request Forgery (CSRF)

Server Security Misconfiguration Broken Authentication and Session Management

Broken Access Control (BAC) Server-Side Injection Sensitive Data Exposure

Mobile Security Misconfiguration Unvalidated Redirects and Forwards

Insecure Direct Object References (IDOR) Application-Level Denial-of-Service (DoS)

Insufficient Security Configurability Missing Function Level Access Control Insecure OS/Firmware

Using Components with Known Vulnerabilities Insecure Data Storage Insecure Data Transport

Broken Cryptography Automotive Security Misconfiguration External Behavior

Client-Side Injection Lack of Binary Hardening Privacy Concerns

Network Security Misconfiguration

Average On-Demand Program

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 18 of 20

Closing statement

December 17, 2020

Bugcrowd Inc.
921 Front St
Suite 100
San Francisco, CA 94111

Introduction

Between the dates of 12/08/2020 - 12/15/2020, Diia: Mobile Application Bug Bounty Program
engaged Bugcrowd Inc. to perform an On-Demand Bounty Program. During this time, 4 researchers from
Bugcrowd submitted a total of 6 vulnerability submissions against Diia: Mobile Application Bug Bounty
Program’s targets. The purpose of this assessment was to identify security issues that could adversely
affect the integrity of Diia: Mobile Application Bug Bounty Program. Testing focused on the following:

1. DIIA Android Application
2. DIIA iOS Application
3. DIIA API

The assessment was performed under the guidelines provided in the statement of work between Diia:
Mobile Application Bug Bounty Program and Bugcrowd. This letter provides a high-level overview of
the testing performed, and the result of that testing.

On-Demand Program Overview

An On-Demand Program is a novel approach to a penetration test. Traditional penetration tests use only
one or two researchers to test an entire scope of work, while an On-Demand Program leverages a crowd
of security researchers. This increases the probability of discovering esoteric issues that automated
testing cannot find and that traditional vulnerability assessments may miss, in the same testing period.

It is important to note that this document represents a point-in-time evaluation of security posture.
Security threats and attacker techniques evolve rapidly, and the results of this assessment are not
intended to represent an endorsement of the adequacy of current security measures against future
threats. This document contains information in summary form and is therefore intended for general
guidance only; it is not intended as a substitute for detailed research or the exercise of professional
judgment. The information presented here should not be construed as professional advice or service.

Testing Methods

This security assessment leveraged researchers that used a combination of proprietary, public,
automated, and manual test techniques throughout the assessment. Commonly tested vulnerabilities
include code injection, cross-site request forgery, cross-site scripting, insecure storage of sensitive data,
authorization/authentication vulnerabilities, business logic vulnerabilities, and more.

Summary of Findings

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 19 of 20

During the program, Bugcrowd discovered the following:

Count Technical Severity

0 Critical vulnerabilities

0 High vulnerabilities

0 Medium vulnerabilities

1 Low vulnerability

0 Informational findings

Upon completion of the assessment, all findings were reported to Diia: Mobile Application Bug Bounty
Program along with all associated vulnerability data.

Bugcrowd On-Demand Program Results | Diia: Mobile Application Bug Bounty Program 20 of 20

	Table of contents
	Executive summary
	Reporting and methodology
	Background

	Targets and scope
	Scope

	Findings summary
	Findings by severity
	Risk and priority key
	Findings table

	Vulnerability details
	Appendix
	Submissions over time
	Submissions signal
	Bug types overview

	Closing statement

